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Parametric regression



Parametric regression
Parametric means that the researcher or analyst
assumes in advance that the data fits some type
of distribution (e.g. the normal distribution).

E.g. one may assume that

where  for ,

Because some type of distribution is assumed in
advance, parametric fitting can lead to fitting a
smooth curve that misrepresents the data.

Examples

Assuming a quadratic fit:

= + + + ,yi β0 β1xi β2x2
i

ϵi

∼ NID(0, )ϵi σ2 i = 1, . . . , n

red = estimated

blue = observed
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Simulating data from parametric models
Say a model is

Then we have

y = + e, e ∼ N(0, ).x2 22

y | x ∼ N( , ).x2 22
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Simulating data from parametric models
Say a model is

Then we have

Let's draw  observations from this model.

Suppose that  and that we have
uniform coverage over the support.

The response  is generated as per above model.

set.seed(1)
df <- tibble(id = 1:200) %>% 
        mutate(x = runif(n(), -10, 10),
               y = x^2 + rnorm(n(), 0, 2))

Plotting this:

ggplot(df, aes(x, y)) +
  geom_point()

y = + e, e ∼ N(0, ).x2 22

y | x ∼ N( , ).x2 22

200

x ∈ (−10, 10)

y
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Logistic regression



Logistic regression
Not all parametric models assume Normally distributed errors nor continuous
responses.

Logistic regression models the relationship between a set of explanatory variables 
 and a set of binary outcomes  for .

We assume that  and the model is given by

Taking the exponential of both sides and rearranging we get

The function  is called the logit function, continuous with range 

, and if  is the probablity of an event,  is the log of the odds.

( , . . . , )xi1 xik Yi i = 1, . . . , n

∼ B(1, ) ≡ Bernoulli( )Yi pi pi

logit( ) = ln( ) = + +. . . + .pi

pi

1 − pi

β0 β1xi1 βkxik

= .pi

1

1 + e−( + +...+ )β0 β1xi1 βkxik

f (p) = ln( )
p

1 − p

(−∞, ∞) p f (p)

7/25



Representation of data for binary outcomes
Data:
mock_df

## # A tibble: 18 × 5
##    Patient Smoker Sex    Cancer CancerBinary
##    <fct>   <fct>  <fct>  <fct>         <dbl>
##  1 1       Yes    Female No                0
##  2 2       Yes    Male   No                0
##  3 3       No     Female Yes               1
##  4 4       Yes    Male   No                0
##  5 5       Yes    Female Yes               1
##  6 6       No     Female No                0
##  7 7       Yes    Female Yes               1
##  8 8       No     Female No                0
##  9 9       No     Female No                0
## 10 10      No     Male   No                0
## 11 11      Yes    Male   No                0
## 12 12      Yes    Female Yes               1
## 13 13      Yes    Male   No                0
## 14 14      Yes    Female No                0
## 15 15      No     Male   Yes               1
## 16 16      No     Female Yes               1
## 17 17      No     Male   No                0
## 18 18      No     Male   Yes               1

Summarised data:
mock_sumdf

## # A tibble: 4 × 4
## # Groups:   Smoke [2]
##   Smoke Sex    Cancer Total
##   <chr> <chr>   <int> <int>
## 1 No    Female      1     2
## 2 No    Male        2     3
## 3 Yes   Female      2     3
## 4 Yes   Male        2     2

The summarised data here give the same
information as the original data, except you lost
the patient number

Note the sample size, n, is larger than the number
of rows in the summarised data
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Logistic regression in R
Fitting logistic regression models in R depend on the form of input data

glm(Cancer ~ Smoker + Sex, 
    family = binomial(link = "logit"), 
    data = mock_df)

glm(cbind(Cancer, Total - Cancer) ~ Smoker + Sex, 
    family = binomial(link = "logit"),
    data = mock_sumdf)

## 
## Call:  glm(formula = Cancer ~ Smoker + Sex, family = bi
##     data = mock_df)
## 
## Coefficients:
## (Intercept)    SmokerYes      SexMale  
##      0.2517      -0.5034      -1.1145  
## 
## Degrees of Freedom: 17 Total (i.e. Null);  15 Residual
## Null Deviance:        24.06 
## Residual Deviance: 22.61     AIC: 28.61

## 
## Call:  glm(formula = cbind(Cancer, Total - Cancer) ~ Smok
##     data = mock_sumdf)
## 
## Coefficients:
## (Intercept)    SmokerYes      SexMale  
##      0.2517      -0.5034      -1.1145  
## 
## Degrees of Freedom: 3 Total (i.e. Null);  1 Residual
## Null Deviance:        5.052 
## Residual Deviance: 3.604     AIC: 15.82
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Simulating from a logistic regression model Part 1

Let's suppose that the probability of
having cancer are the following:

0.075 for women smokers

0.045 for men smokers

0.005 for women non-smokers

0.003 for men non-smokers

We'll sample 500 people for each
group

Remember that under the logistic
regression model, we assumed that 

## # A tibble: 53 × 5
## # Rowwise: 
##       id Smoker Sex    CancerBinary Cancer
##    <int> <chr>  <chr>         <int> <chr> 
##  1    33 Yes    Female            1 Yes   
##  2    38 Yes    Male              1 Yes   
##  3    53 Yes    Female            1 Yes   
##  4    89 Yes    Female            1 Yes   
##  5   135 Yes    Female            1 Yes   
##  6   142 Yes    Male              1 Yes   
##  7   155 Yes    Female            1 Yes   
##  8   224 Yes    Male              1 Yes   

df <- tibble(id = 1:2000) %>% 
  mutate(Smoker = rep(c("Yes", "No"), each = n() / 2),
         Sex = rep(c("Female", "Male"), times = n() / 2)) %>% 
  rowwise() %>% 
  mutate(CancerBinary = 
           case_when(Smoker=="Yes" & Sex=="Female" ~ rbinom(1, 1, 0.075)
                     Smoker=="Yes" & Sex=="Male" ~ rbinom(1, 1, 0.045),
                     Smoker=="No" & Sex=="Female" ~ rbinom(1, 1, 0.005),
                     Smoker=="No" & Sex=="Male" ~ rbinom(1, 1, 0.003)),
         Cancer = ifelse(CancerBinary, "Yes", "No"))

df %>% 
  filter(Cancer=="Yes")

∼ B(1, )Yi pi
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Simulating from a logistic regression model Part 2

At times, you may want to simulate the
summary data directly instead of the
individual data

Recall that if  for 
and s are independent,

## # A tibble: 4 × 4
## # Rowwise: 
##   Smoker Sex    Cancer Total
##   <chr>  <chr>   <int> <dbl>
## 1 Yes    Female     37   500
## 2 Yes    Male       21   500
## 3 No     Female      1   500
## 4 No     Male        2   500

expand_grid(Smoker = c("Yes", "No"), Sex = c("Female", "Male")) %>% 
  rowwise() %>% 
  mutate(Cancer = 
           case_when(Smoker=="Yes" & Sex=="Female" ~ rbinom(1, 500, 0.07
                     Smoker=="Yes" & Sex=="Male" ~ rbinom(1, 500, 0.045)
                     Smoker=="No" & Sex=="Female" ~ rbinom(1, 500, 0.005
                     Smoker=="No" & Sex=="Male" ~ rbinom(1, 500, 0.003))
         Total = 500)

∼ B(1, p)Yi i = 1, . . . k

Yi

S = + +. . . + ∼ B(k, p)Y1 Y2 Yk
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Case study 1  Menarche
In 1965, the average age of 25 homogeneous groups of girls was recorded along with the number of girls
who have reached menarche out of the total in each group.

Milicer, H. and Szczotka, F. (1966) Age at Menarche in Warsaw girls in 1965. Human Biology 38, 199–203. 12/25

📊 data R

file:///Users/etan0038/Dropbox/teaching/monash/eda-2021/release/lectures/lecture-08A.html?panelset=%F0%9F%93%8A#panelset_%F0%9F%93%8A
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Simulating data from a �tted logistic regression model Part 1

Suppose we want to simulate from the fitted model

We first fit the fitted model

fit1 <- 
  glm(cbind(Menarche, Total - Menarche) ~ Age, 
      family = "binomial", 
      data = menarche)
(beta <- coef(fit1))

## (Intercept)         Age 
##  -21.226395    1.631968

The fitted regression model is given as:

Rearranging we get

Simulating from first principles:

menarche %>% 
  rowwise() %>% 
  mutate(
    phat = 1/(1 + exp(-(beta[1] + beta[2] * Age))),
    simMenarche = rbinom(1, Total, phat))

## # A tibble: 25 × 5
## # Rowwise: 
##      Age Total Menarche    phat simMenarche
##    <dbl> <dbl>    <dbl>   <dbl>       <int>
##  1  9.21   376        0 0.00203           2
##  2 10.2    200        0 0.0103            1
##  3 10.6     93        0 0.0187            1
##  4 10.8    120        2 0.0279            5
##  5 11.1     90        2 0.0413            3
##  6 11.3     88        5 0.0609            4
##  7 11.6    105       10 0.0888            6
##  8 11.8    111       17 0.128             9
##  9 12.1    100       16 0.181            20
## 10 12.3     93       29 0.249            25
## # … with 15 more rows

logit( ) = + .p̂ 
i

β ̂ 
0 β ̂ 

1xi1

= .p̂ 
i

1

1 + e−( + )β ̂ 
0

β ̂ 
1
xi1
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Simulating data from a �tted logistic regression model Part 2

An easier way to do this is to use the simulate function which works for many model objects in R

Below it's simulating 3 sets of responses (i.e. counts of "success" and "failure" events) from fit1 logistic
model object

simulate(fit1, nsim = 3)

##    sim_1.Menarche sim_1.V2 sim_2.Menarche sim_2.V2 sim_3.Menarche sim_3.V2
## 1               0      376              2      374              0      376
## 2               1      199              4      196              3      197
## 3               2       91              3       90              1       92
## 4               5      115              4      116              2      118
## 5               4       86              4       86              5       85
## 6               7       81              2       86              2       86
## 7               9       96              9       96              5      100
## 8              14       97             14       97             13       98
## 9              17       83             24       76             18       82
## 10             22       71             25       68             24       69
## 11             33       67             29       71             37       63
## 12             45       63             38       70             49       59
## 13             47       52             53       46             44       55 14/25



Diagnostics for logistic regression models
One diagnostic is to compare the observed and
expected proportions under the logistic
regression fit.

Goodness-of-fit type test is used commonly to
assess the fit as well.

E.g. Hosmer–Lemeshow test, where test statistic
is given as

where   and   are observed (expected) frequencies

for successful and non-successful events for group , respectively.

vcdExtra::HLtest(fit1)

df1 <- menarche %>% 
  mutate(
    pexp = 1/(1 + exp(-(beta[1] + beta
    pobs = Menarche / Total)

## Hosmer and Lemeshow Goodness-of-Fit 
## 
## Call:
## glm(formula = Menarche/Total ~ Age, 
##  ChiSquare df   P_value
##  0.1041887  8 0.9999997

H = ( + )∑
i=1

r ( −O1i E1g)
2

E1i

( −O0i E0g)
2

E0i

O1i ( )E1i O0i ( )E0i

i
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Diagnostics for linear models



Assumptions for linear models
For ,

where  or in matrix format,

where

` `,

` `,

` `, and

` `, where

` ` for ` `

This means that we assume

1.  for 

2.  are independent.

3.  for  (i.e. homogeneity).

4.  are normally distributed.

So how do we check it?

i ∈ {1, . . . , n}

= + +. . . + + ,Yi β0 β1xi1 βkxik ϵi

∼ NID(0, )ϵi σ2

Y = Xβ + ϵ, ϵ ∼ N(0, )σ2
In

Y = ( , . . . ,Y1 Yn)⊤

β = ( , . . . ,β0 βk)⊤

ϵ = ( , . . . ,ϵ1 ϵn)⊤

X = [ ]1n x1 . . . xk

= ( , . . . ,xj x1j xnj)
⊤ j ∈ {1, . . . , k}

E( ) = 0ϵi i ∈ {1, . . . , n}.

, . . . ,ϵ1 ϵn

Var( ) =ϵi σ2
i ∈ {1, . . . , n}

, . . . ,ϵ1 ϵn
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Model diagnostics for linear models

Plot  vs  to see if there is  a linear relationship
between  and .

A boxplot of the residuals  to check for
symmetry.

To check the homoscedasticity assumption, plot 
vs . There should be no obvious patterns.

A normal Q-Q plot, i.e. a plot of the ordered
residuals vs .

Yi xi ≈

Y x

Ri

Ri

xi ( )Φ
−1 i

n+1
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Assessing (A1)  for 
It is a property of the least squares method that

for , hence (A1) will always appear valid "overall".

Trend in residual versus fitted values or covariate can indicate "local" failure of (A1).

What do you conclude from the following plots?

E( ) = 0ϵi i = 1, … , n

= 0, so = 0∑
i=1

n

Ri R̄i

= −Ri Yi Y ̂ 
i
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Assessing (A2)-(A3)

(A2)  are independent
If (A2) is correct, then residuals should appear
randomly scattered about zero if plotted
against fitted values or covariate.

Long sequences of positive residuals followed
by sequences of negative residuals in  vs 
plot suggests that the error terms are not
independent.

(A3)  for 
If (A3) holds then the spread of the residuals
should be roughly the same across the fitted
values or covariate.

, … ,ϵ1 ϵn

Ri xi

Var( ) =ϵi σ
2

i = 1, … , n
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Assessing (A4)  are normally distributed

Q-Q Plots
The function qqnorm(x) produces a
Q-Q plot of the ordered vector x
against the quantiles of the normal
distribution.

The  chosen normal quantiles 
 are easy to calculate but

more sophisticated ways exist:

, default in qqnorm.

, recommended by
Hyndman and Fan (1996).

In R
fit <- lm(y ~ x)

By "hand"

plot(qnorm((1:n) / (n + 1)), sort(resid(fit)))

By base

qqnorm(resid(fit))
qqline(resid(fit))

By ggplot2

data.frame(residual = resid(fit)) %>% 
  ggplot(aes(sample = residual)) + 
  stat_qq() + stat_qq_line(color="blue")

, … ,ϵ1 ϵn

n

( )Φ
−1 i

n+1

↦
i

n+1

i−3/8

n+1/4

↦
i

n+1

i−1/3

n+1/3

Reference: Hyndman and Fan (1996). Sample quantiles in statistical packages, American Statistician, 50, 361--365. 21/25



Examining simulated data

Simulation scheme

n <- 100
x <- seq(0, 1, length.out = n)
y1 <- x + rnorm(n) / 3                  #  Linear
y2 <- 3 * (x - 0.5) ^ 2 + 
  c(rnorm(n / 2)/3, rnorm(n / 2)/6)     #  Quadratic
y3 <- -0.25 * sin(20 * x - 0.2) + 
  x + rnorm(n) / 3                      #  Non-linear

M1 <- lm(y1 ~ x); M2 <- lm(y2 ~ x); M3 <- lm(y3 ~ x)
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Take away messages

Parametric models assume some
distribution in advance



Logistic models can be used to model
explanatory variables with binary outcomes



You should be able to simulate from
parametric models



You can perform basic model diagnostics

You can use simulation to analyse model
properties
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Resources and Acknowledgement
Some of these slides were inspired by STAT3012 Applied Linear Models at The University of Sydney by
Prof Samuel Muller

Cook & Weisberg (1994) "An Introduction to Regression Graphics"

Data coding using tidyverse suite of R packages

Slides constructed with xaringan, remark.js, knitr, and R Markdown.
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https://www.tidyverse.org/
https://github.com/yihui/xaringan
https://remarkjs.com/
http://yihui.name/knitr
https://rmarkdown.rstudio.com/


This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
International License.

Lecturer: Emi Tanaka

 ETC5521.Clayton-x@monash.edu

 Week 8 - Session 1

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

