

ETC5521: Exploratory Data Analysis

Sculpting data using models, checking assumptions, codependency and performing diagnostics

Lecturer: Emi Tanaka

ETC5521.Clayton-x@monash.edu

Heek 8 - Session 1

Parametric regression

Parametric regression

- **Parametric** means that the researcher or analyst assumes in advance that the data fits some type of distribution (e.g. the normal distribution).
- E.g. one may assume that

 $y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i,$

where $\epsilon_i \sim NID(0, \sigma^2)$ for i = 1, ..., n,

- *red* = estimated
- *blue* = observed
- Because some type of distribution is assumed in advance, parametric fitting can lead to fitting a smooth curve that misrepresents the data.

Examples

Assuming a quadratic fit:

Simulating data from parametric models

• Say a model is

$$y = x^2 + e,$$
 $e \sim N(0, 2^2).$

• Then we have

 $y \mid x \sim N(x^2, 2^2).$

Simulating data from parametric models

• Say a model is

$$y = x^2 + e,$$
 $e \sim N(0, 2^2).$

• Then we have

 $y \mid x \sim N(x^2, 2^2).$

- Let's draw 200 observations from this model.
- Suppose that $x \in (-10, 10)$ and that we have uniform coverage over the support.
- The response *y* is generated as per above model.

Plotting this:

```
ggplot(df, aes(x, y)) +
  geom_point()
```


Logistic regression

Logistic regression

- Not all parametric models assume Normally distributed errors nor continuous responses.
- Logistic regression models the relationship between a set of explanatory variables (x_{i1}, \ldots, x_{ik}) and a set of **binary outcomes** Y_i for $i = 1, \ldots, n$.
- We assume that $Y_i \sim B(1, p_i) \equiv Bernoulli(p_i)$ and the model is given by

$$\operatorname{logit}(p_i) = \ln\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik}$$

• Taking the exponential of both sides and rearranging we get

$$p_i = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik})}}.$$

• The function $f(p) = \ln\left(\frac{p}{1-p}\right)$ is called the **logit** function, continuous with range $(-\infty, \infty)$, and if *p* is the probablity of an event, f(p) is the log of the odds.

Representation of data for binary outcomes

Data:

$mock_df$

##	## # A tibble: 18 × 5						
##		Patient	Smoker	Sex	Cancer	CancerBinary	
##		<fct></fct>	<fct></fct>	<fct></fct>	<fct></fct>	<dbl></dbl>	
##	1	1	Yes	Female	No	0	
##	2	2	Yes	Male	No	0	
##	3	3	No	Female	Yes	1	
##	4	4	Yes	Male	No	0	
##	5	5	Yes	Female	Yes	1	
##	6	6	No	Female	No	0	
##	7	7	Yes	Female	Yes	1	
##	8	8	No	Female	No	0	
##	9	9	No	Female	No	0	
##	10	10	No	Male	No	0	
##	11	11	Yes	Male	No	0	
##	12	12	Yes	Female	Yes	1	
##	13	13	Yes	Male	No	0	
##	14	14	Yes	Female	No	0	
##	15	15	No	Male	Yes	1	
##	16	16	No	Female	Yes	1	
##	17	17	No	Male	No	0	
##	18	18	No	Male	Yes	1	

Summarised data:

$mock_sumdf$

##	#	A tibb	ole: 4	× 4	
##	#	Groups	s: Sm	noke [2]	
##		Smoke	Sex	Cancer	Total
##		<chr></chr>	<chr></chr>	<int></int>	<int></int>
##	1	No	Female	e 1	2
##	2	No	Male	2	3
##	3	Yes	Female	e 2	3
##	4	Yes	Male	2	2

- The summarised data here give the same information as the original data, except you lost the patient number
- Note the sample size, n, is larger than the number of rows in the summarised data

Logistic regression in R

• Fitting logistic regression models in R depend on the form of input data

```
glm(cbind(Cancer, Total - Cancer) ~ Smoker + Sex.
glm(Cancer ~ Smoker + Sex,
   family = binomial(link = "logit"),
                                                            family = binomial(link = "logit"),
   data = mock_df
                                                            data = mock_sumdf)
##
                                                         ##
## Call: glm(formula = Cancer ~ Smoker + Sex, family = bi
                                                         ## Call: glm(formula = cbind(Cancer, Total - Cancer) ~ Smok
      data = mock df
                                                               data = mock sumdf)
##
                                                         ##
##
                                                         ##
## Coefficients:
                                                         ## Coefficients:
## (Intercept) SmokerYes SexMale
                                                         ## (Intercept) SmokerYes SexMale
       0.2517 -0.5034 -1.1145
                                                                0.2517 -0.5034 -1.1145
##
                                                         ##
##
                                                         ##
## Degrees of Freedom: 17 Total (i.e. Null); 15 Residual
                                                         ## Degrees of Freedom: 3 Total (i.e. Null); 1 Residual
## Null Deviance:
                       24.06
                                                         ## Null Deviance:
                                                                                5.052
## Residual Deviance: 22.61 AIC: 28.61
                                                         ## Residual Deviance: 3.604 AIC: 15.82
```

Simulating from a logistic regression model Part 1

- Let's suppose that the probability of having cancer are the following:
 - 0.075 for women smokers
 - 0.045 for men smokers
 - 0.005 for women non-smokers
 - 0.003 for men non-smokers
- We'll sample 500 people for each group
- Remember that under the logistic regression model, we assumed that $Y_i \sim B(1, p_i)$

```
df <- tibble(id = 1:2000) %>%
  mutate(Smoker = rep(c("Yes", "No"), each = n() / 2),
      Sex = rep(c("Female", "Male"), times = n() / 2)) %>%
  rowwise() %>%
  mutate(CancerBinary =
      case_when(Smoker=="Yes" & Sex=="Female" ~ rbinom(1, 1, 0.075)
           Smoker=="Yes" & Sex=="Male" ~ rbinom(1, 1, 0.045),
           Smoker=="No" & Sex=="Female" ~ rbinom(1, 1, 0.005),
           Smoker=="No" & Sex=="Male" ~ rbinom(1, 1, 0.003)),
      Cancer = ifelse(CancerBinary, "Yes", "No"))
```

```
df %>%
  filter(Cancer=="Yes")
```

```
## # A tibble: 53 × 5
## # Rowwise:
        id Smoker Sex
                        CancerBinary Cancer
##
##
     <int> <chr> <chr>
                               <int> <chr>
##
        33 Yes
                  Female
                                   1 Yes
   1
        38 Yes
                  Male
##
   2
                                   1 Yes
##
   3
        53 Yes
                  Female
                                   1 Yes
##
   4
        89 Yes
                  Female
                                  1 Yes
##
                  Female
   5
     135 Yes
                                   1 Yes
                  Male
##
       142 Yes
                                   1 Yes
   6
##
      155 Yes
                  Female
                                   1 Yes
   7
##
       224 Yes
                  Male
                                   1 Yes
   8
```

Simulating from a logistic regression model Part 2

- At times, you may want to simulate the summary data directly instead of the individual data
- Recall that if $Y_i \sim B(1,p)$ for i = 1, ..., kand Y_i s are independent,

 $S = Y_1 + Y_2 + \ldots + Y_k \sim B(k, p)$

<pre>xpand_grid(Smoker = o rowwise() %>%</pre>	c("Yes", "No"),
<pre>mutate(Cancer =</pre>	
case_when(Smoker=="Yes" & Sex=="Female" ~ rbinom(1, 500, 0.07
	Smoker=="Yes" & Sex=="Male" ~ rbinom(1, 500, 0.045)
	Smoker=="No" & Sex=="Female" ~ rbinom(1, 500, 0.005
	Smoker=="No" & Sex=="Male" ~ rbinom(1, 500, 0.003))
Total = 500)	

##	#	A tibb]	le: 4 ×	4	
##	#	Rowwise	Э:		
##		Smoker	Sex	Cancer	Total
##		<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>
##	1	Yes	Female	37	500
##	2	Yes	Male	21	500
##	3	No	Female	1	500
##	4	No	Male	2	500

• In 1965, the average age of 25 homogeneous groups of girls was recorded along with the number of girls who have reached menarche out of the total in each group.

🖬 data R

Simulating data from a fitted logistic regression model Part 1

- Suppose we want to simulate from the fitted model
- We first fit the fitted model

```
fit1 <-
  glm(cbind(Menarche, Total - Menarche) ~ Age,
     family = "binomial",
     data = menarche)
(beta <- coef(fit1))</pre>
```

- ## (Intercept) Age ## -21.226395 1.631968
- The fitted regression model is given as:

$$\operatorname{logit}(\hat{p}_i) = \hat{\beta}_0 + \hat{\beta}_1 x_{i1}.$$

• Rearranging we get

$$\hat{p}_i = \frac{1}{1 + e^{-(\hat{\beta}_0 + \hat{\beta}_1 x_{i1})}}$$

• Simulating from first principles:

```
menarche %>%
  rowwise() %>%
  mutate(
    phat = 1/(1 + exp(-(beta[1] + beta[2] * Age))),
    simMenarche = rbinom(1, Total, phat))
```

```
## # A tibble: 25 × 5
```

```
## # Rowwise:
```

##		Age	Total	Menarche	phat	simMenarche
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
##	1	9.21	376	0	0.00203	2
##	2	10.2	200	0	0.0103	1
##	3	10.6	93	0	0.0187	1
##	4	10.8	120	2	0.0279	5
##	5	11.1	90	2	0.0413	3
##	6	11.3	88	5	0.0609	4
##	7	11.6	105	10	0.0888	6
##	8	11.8	111	17	0.128	9
##	9	12.1	100	16	0.181	20
##	10	12.3	93	29	0.249	25
##	# .	. with	15 mor	e rows		

Simulating data from a fitted logistic regression model Part 2

simulate(fit1, nsim = 3)

- An easier way to do this is to use the simulate function which works for many model objects in R
- Below it's simulating 3 sets of responses (i.e. counts of "success" and "failure" events) from fit1 logistic model object

sim_1.Menarche sim_1.V2 sim_2.Menarche sim_2.V2 sim_3.Menarche sim_3.V2 ## ## 1 ## 2 ## 3 ## 4 ## 5 ## 6 ## 7 ## 8 ## 9 ## 10 ## 11 ## ## 13

Diagnostics for logistic regression models

• One diagnostic is to compare the observed and expected proportions under the logistic regression fit.

```
df1 <- menarche %>%
  mutate(
    pexp = 1/(1 + exp(-(beta[1] + beta
    pobs = Menarche / Total)
```

- Goodness-of-fit type test is used commonly to assess the fit as well.
- E.g. Hosmer–Lemeshow test, where test statistic is given as

$$H = \sum_{i=1}^{r} \left(\frac{(O_{1i} - E_{1g})^2}{E_{1i}} + \frac{(O_{0i} - E_{0g})^2}{E_{0i}} \right)$$

where $O_{1i}(E_{1i})$ and $O_{0i}(E_{0i})$ are observed (expected) frequencies for successful and non-successful events for group *i*, respectively.

```
vcdExtra::HLtest(fit1)
```

```
## Hosmer and Lemeshow Goodness-of-Fit
##
## Call:
## glm(formula = Menarche/Total ~ Age,
## ChiSquare df P_value
## 0.1041887 8 0.9999997 15/25
```

Diagnostics for linear models

Assumptions for linear models

For $i \in \{1, ..., n\}$,

 $Y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + \epsilon_i,$

where $\epsilon_i \sim NID(0, \sigma^2)$ or in matrix format,

 $Y = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$

where

- $\mathbf{Y} = (Y_1, \ldots, Y_n)^{\mathsf{T}}$,
- $\boldsymbol{\beta} = (\beta_0, \ldots, \beta_k)^{\top}$,
- $\epsilon = (\epsilon_1, \ldots, \epsilon_n)^{\mathsf{T}}$, and
- $\mathbf{X} = \begin{bmatrix} \mathbf{1}_n & \mathbf{x}_1 & \dots & \mathbf{x}_k \end{bmatrix}$, where
- $\mathbf{x}_j = (x_{1j}, \dots, x_{nj})^{\top}$ for $j \in \{1, \dots, k\}$

- This means that we assume
 - 1. $E(\epsilon_i) = 0$ for $i \in \{1, ..., n\}$.
- 2. $\epsilon_1, \ldots, \epsilon_n$ are independent.
- 3. $Var(\epsilon_i) = \sigma^2$ for $i \in \{1, ..., n\}$ (i.e. homogeneity).
- 4. $\epsilon_1, \ldots, \epsilon_n$ are normally distributed.

So how do we check it?

Model diagnostics for linear models

Plot Y_i vs x_i to see if there is \approx a linear relationship between Y and x.

A boxplot of the residuals R_i to check for symmetry.

To check the homoscedasticity assumption, plot R_i vs x_i . There should be no obvious patterns.

A normal Q-Q plot, i.e. a plot of the ordered residuals vs $\Phi^{-1}(\frac{i}{n+1})$.

Assessing (A1) $E(\epsilon_i) = 0$ for i = 1, ..., n

• It is a property of the least squares method that

$$\sum_{i=1}^{n} R_i = 0, \quad \text{so} \quad \bar{R}_i = 0$$

for $R_i = Y_i - \hat{Y}_i$, hence (A1) will always appear valid "overall".

- Trend in residual versus fitted values or covariate can indicate "local" failure of (A1).
- What do you conclude from the following plots?

Assessing (A2)-(A3)

(A2) $\epsilon_1, \ldots, \epsilon_n$ are independent

- If (A2) is correct, then residuals should appear randomly scattered about zero if plotted against fitted values or covariate.
- Long sequences of positive residuals followed by sequences of negative residuals in R_i vs x_i plot suggests that the error terms are not independent.

A3)
$$Var(e_i) = \sigma^2$$
 for $i = 1, ..., n$

• If (A3) holds then the spread of the residuals should be roughly the same across the fitted values or covariate.

Assessing (A4) $\epsilon_1, \ldots, \epsilon_n$ are normally distributed

Q-Q Plots

- The function qqnorm(x) produces a Q-Q plot of the ordered vector x against the quantiles of the normal distribution.
- The *n* chosen normal quantiles $\Phi^{-1}(\frac{i}{n+1})$ are easy to calculate but more sophisticated ways exist:
 - $\frac{i}{n+1} \mapsto \frac{i-3/8}{n+1/4}$, default in qqnorm.
 - $\frac{i}{n+1} \mapsto \frac{i-1/3}{n+1/3}$, recommended by Hyndman and Fan (1996).

In R

fit <- $lm(y \sim x)$

By "hand"

plot(qnorm((1:n) / (n + 1)), sort(resid(fit)))

By base

qqnorm(resid(fit))
qqline(resid(fit))

By ggplot2

```
data.frame(residual = resid(fit)) %>%
ggplot(aes(sample = residual)) +
stat_qq() + stat_qq_line(color="blue")
```

Examining simulated data

Simulation scheme

Take away messages

- Parametric models assume some distribution in advance
- Logistic models can be used to model explanatory variables with binary outcomes
- You should be able to simulate from parametric models
- You can perform basic model diagnostics
- You can use simulation to analyse model properties

Resources and Acknowledgement

- Some of these slides were inspired by STAT3012 Applied Linear Models at The University of Sydney by Prof Samuel Muller
- Cook & Weisberg (1994) "An Introduction to Regression Graphics"
- Data coding using tidyverse suite of R packages
- Slides constructed with xaringan, remark.js, knitr, and R Markdown.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Lecturer: Emi Tanaka

ETC5521.Clayton-x@monash.edu

Heek 8 - Session 1

