Repetitive tasks

```r
df <- forcats::gss_cat

🎯 Let's calculate the number of distinct values for each column and store it in `n`

```r
n <- vector("integer", length = ncol(df))
n[1] <- n_distinct(df[[1]])
n[2] <- n_distinct(df[[2]])
n[3] <- n_distinct(df[[3]])
n[4] <- n_distinct(df[[4]])
n[5] <- n_distinct(df[[5]])
n[6] <- n_distinct(df[[6]])
n[7] <- n_distinct(df[[6]])
n[8] <- n_distinct(df[[8]])
n[9] <- n_distinct(df[[9]])
```

Anything you notice from above?
Using for loops

```r
n <- vector("integer", length = ncol(df))
for(i in 1:ncol(df)) {
 n[i] <- n_distinct(df[[i]])
}
```

But R is notoriously known for being slow using for loops

The new `across` function in `dplyr` can do this without for loops

```r
df %>%
 summarise(across(everything(), n_distinct))
```

## # A tibble: 1 x 9
## #  year marital   age  race rincome partyid relig denom tvhours
## <int> <int> <int> <int>   <int>   <int> <int> <int>   <int>
##    1    8    6    73     3      16      10    15    30    25

But the result is a data.frame
purrr is part of the core tidyverse packages

It contains a series of map and walk functions

```r
map_int <- function(df, n_distinct)
 ##
 ## year marital age race rincome partyid relig denom tvhours
 ## 8 6 73 3 16 10 15 30 25

map_chr <- function(df, n_distinct)
 ##
 ## year marital age race rincome partyid relig denom tvhours
 ## "8" "6" "73" "3" "16" "10" "15" "30" "25"

map_df <- function(df, n_distinct)
 ## # A tibble: 1 x 9
 ## year marital age race rincome partyid relig denom tvhours
 ## <int> <int> <int> <int> <int> <int> <int> <int> <int>
 ## 1 8 6 73 3 16 10 15 30 25
```

- The related functions in purrr have been designed so that their inputs are consistent
- The user is required to think of the expected output before seeing the output, e.g.
  - `map_int` returns a vector of integers
  - `map_df` returns a data frame
map functions in purrr

- `map(.x, .f, ...)` returns list
- `map_chr(.x, .f, ...)` returns a vector of character
- `map_dbl(.x, .f, ...)` returns a vector of numeric
- `map_int(.x, .f, ...)` returns a vector of integer
- `map_lgl(.x, .f, ...)` returns a vector of logical
- `map_raw(.x, .f, ...)` returns a vector of raw
- `map_df(.x, .f, ...), map_dfr(.x, .f, ...)` returns a data frame, combining data.frame by row
- `map_dfc(.x, .f, ...)` returns a data frame, combining data.frame by column
Conditional maps in purrr

- `map_if(.x, .p, .f, ...)`: uses `.p` to determine if `.f` will be applied to `.x`.
- `map_at(.x, .at, .f, ...)`: applies `.f` to `.x` at `.at` (name or position).
- `map_depth(.x, .depth, .f, ...)`: applies `.f` to `.x` at a specific depth level of a nested vector.

**The return object is always a list**

```r
map_if(df, is.factor, as.character) %>% as_tibble()
```

```
A tibble: 21,483 x 9
year marital age race rincome partyid relig denom tvho
<int> <chr> <int> <chr> <chr> <chr> <chr> <chr> <i
1 2000 Never ma… 26 White $8000 to … Ind,near r… Protesta… Souther…
2 2000 Divorced 48 White $8000 to … Not str re… Protesta… Baptist…
3 2000 Widowed 67 White Not appli… Independent Protesta… No deno…
4 2000 Never ma… 39 White Not appli… Ind,near r… Orthodox… Not app…
```
Functional programming

- `lapply, Map, mapply, sapply, tapply, apply, and vapply` are variants of functional programming in Base R.
- Some function outputs in Base R are more predictable than others:
  - `purrr::map` is a variant of `lapply` (which always returns list).
  - `purrr::pmap` is a variant of `Map` (which takes more than one input).
- `sapply` doesn't require users to specify the output type, instead it'll try to figure out what looks best for the user... great for interactive use but require great caution for programming.
- So setting return type expectation is the reason to use `purrr`?
Anonymous functions

Part 1

- Also called **lambda expression** in computer programming
- These are functions without names

```r
map_int(df, function(x) length(unique(x)))
```

```r
year marital age race rincome partyid relig denom tvhours
8 6 73 3 16 10 15 30 25
```

- Tidyverse often employs a special shorthand using a formula and `.x` as a special placeholder for input

```r
map_int(df, ~length(unique(.x)))
```

```r
year marital age race rincome partyid relig denom tvhours
8 6 73 3 16 10 15 30 25
```
And yes, it's not just for purrr functions:

```r
df %>%
 summarise(across(everything(), ~length(unique(.x))))
```

This formula anonymous function is expanded to an actual anonymous function under the hood using `rlang::as_function()`

Most tidyverse functions would support this formula approach to anonymous function, but likely not outside of that ecosystem unless developers adopt the same system
Functions with two inputs

For functions with two inputs, you can use the `map2` variants in `purrr`:

```r
x <- c(1, 2, 3)
y <- c(0.1, 0.2, 0.3)
map2_dbl(x, y, function(.x, .y) .x + .y)
[1] 1.1 2.2 3.3
```

For anonymous functions with two inputs, the first input is `.x` (as before) and the second is `.y`:

```r
map2_dbl(x, y, ~.x + .y)
[1] 1.1 2.2 3.3
```
Functions with more than two inputs

- What about if there are more than two input?
- You can use `pmap` variants in `purrr`
- But no formula anonymous function supported:

```r
x <- c(1, 2, 3)
y <- c(0.1, 0.2, 0.3)
z <- c(10, 20, 30)
pmap_dbl(list(x, y, z), function(.x, .y, .z) .x + .y + .z)
[1] 11.1 22.2 33.3
```
Other functions in purrr

Using names of input

- The `imap(x)` variants are shorthand for `map2(x, names(x))`

```r
imap_chr(list(x = 1L, y = 4L), ~paste0(.y, ":", .x))
```

```r
x y
"x:1" "y:4"
```

Expecting no return object

- If you are looking to get a side effect rather than return, you can use the `walk` variants

```r
iwalk(df, ~write.csv(.x, file = paste0(.y, ".csv")))
```
Let's simulate response of size 400 from a data generating process where it is a simple linear model with slope as -2 and intercept as 1 with error from $N(0, 1)$.

```r
set.seed(1)
dat <- tibble(id = 1:400) %>%
 mutate(x = runif(n(), 0, 10),
 y = 1 - 2 * x + rnorm(n()))
```

Let's then fit a linear model and a robust linear model to compare their estimates.

```r
fit_lm <- lm(y ~ x, data = dat)
fit_rlm <- MASS::rlm(y ~ x, data = dat)

coef(fit_lm)
```

```r
(Intercept) x
0.9965522 -1.9994216
```

```r
coef(fit_rlm)
```

```r
(Intercept) x
1.012063 -1.999890
```
A simulated study

Part 2

• Let's make it interesting but adding a few outliers

```r
set.seed(1)
dat$y[1:3] <- 100
```

• Let's refit the model

```r
fit_lm <- lm(y ~ x, data = dat)
fit_rlm <- MASS::rlm(y ~ x, data = dat)

coef(fit_lm)
(Intercept) x
2.233095 -2.089164

coef(fit_rlm)
(Intercept) x
1.019283 -2.000755
```
• For a proper simulation, you need to run it a multiple times

• Let's do the same simulation 200 times

```r
set.seed(1)
map_dfr(1:200, ~{
 dat <- tibble(id = 1:400) %>% # 400 observations
 mutate(x = runif(n(), 0, 10), # independent covariate
 y = 1 - 2 * x + rnorm(n())) # dependent response
 dat$y[1:3] <- 100
 fit_lm <- lm(y ~ x, data = dat)
 fit_rlm <- MASS::rlm(y ~ x, data = dat)
 tibble(intercept_lm = coef(fit_lm)[1], intercept_rlm = coef(fit_rlm)[1],
 slope_lm = coef(fit_lm)[2], slope_rlm = coef(fit_rlm)[2], sim = .x))
})
```

```
A tibble: 200 x 5
 intercept_lm intercept_rlm slope_lm slope_rlm sim
 <dbl> <dbl> <dbl> <dbl> <int>
 1 2.23 1.02 -2.09 -2.00 1
```
A simulated study

You can speed up your simulations by using parallel processing with `furrr` package

```r
set.seed(1)
library(furrr)
plan(multisession, workers = 2)
future_map_dfr(1:200, ~{
 dat <- tibble(id = 1:400) %>% # 400 observations
 mutate(x = runif(n(), 0, 10), # independent covariate
 y = 1 - 2 * x + rnorm(n())) # dependent response
 dat$y[1:3] <- 100
dat$x <- runif(n(), 0, 10)
fit_lm <- lm(y ~ x, data = dat)
fit_rlm <- MASS::rlm(y ~ x, data = dat)
 tibble(intercept_lm = coef(fit_lm)[1],
 intercept_rlm = coef(fit_rlm)[1],
 slope_lm = coef(fit_lm)[2],
 slope_rlm = coef(fit_rlm)[2],
 sim = .x))
```

## A tibble: 200 x 5
##   intercept_lm intercept_rlm slope_lm slope_rlm   sim
##          (dbl)        (dbl)     (dbl)     (dbl)     (int)
• There are many functions in `tidyverse`, the key is *not* to remember them all but remember key points to have a mental trigger where to look

• There are multiple of ways to data wrangle to get to the same result

• What's more important that code is readable and done in a way to satisfy your objective to you *and* others that you share your work with, e.g. in production, backward compatibility in Base R may be more important
How many of the top downloaded package in the past month is tidyverse related?

It's hard to ignore what is widely used

Also a duty to be aware with the latest if you work with data?

<table>
<thead>
<tr>
<th>rank</th>
<th>package</th>
<th>count</th>
<th>from</th>
<th>to</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>jsonlite</td>
<td>2322852</td>
<td>2020-11-01</td>
<td>2020-11-30</td>
</tr>
<tr>
<td>2</td>
<td>rlang</td>
<td>1813779</td>
<td>2020-11-01</td>
<td>2020-11-30</td>
</tr>
<tr>
<td>3</td>
<td>ggplot2</td>
<td>1801691</td>
<td>2020-11-01</td>
<td>2020-11-30</td>
</tr>
<tr>
<td>4</td>
<td>vctrs</td>
<td>1651019</td>
<td>2020-11-01</td>
<td>2020-11-30</td>
</tr>
<tr>
<td>5</td>
<td>fs</td>
<td>1618762</td>
<td>2020-11-01</td>
<td>2020-11-30</td>
</tr>
<tr>
<td>6</td>
<td>devtools</td>
<td>1590942</td>
<td>2020-11-01</td>
<td>2020-11-30</td>
</tr>
<tr>
<td>7</td>
<td>usethis</td>
<td>1520368</td>
<td>2020-11-01</td>
<td>2020-11-30</td>
</tr>
<tr>
<td>8</td>
<td>dplyr</td>
<td>1394366</td>
<td>2020-11-01</td>
<td>2020-11-30</td>
</tr>
<tr>
<td>9</td>
<td>tibble</td>
<td>1250293</td>
<td>2020-11-01</td>
<td>2020-11-30</td>
</tr>
<tr>
<td>10</td>
<td>glue</td>
<td>1190160</td>
<td>2020-11-01</td>
<td>2020-11-30</td>
</tr>
</tbody>
</table>
Software language is an evolving language

Tidyverse evolution has at least now slowed down compared to before

Enjoy your evolving data wrangling journey!
If you installed the dwexercise package, run below in your R console

```r
learnr::run_tutorial("day2-exercise-04", package = "dwexercise")
```

If the above doesn't work for you, go here.

Questions or issues, let us know!
## SESSION INFORMATION

```r
devtools::session_info()
```

### Setting

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>R version 4.0.1 (2020-06-06)</td>
</tr>
<tr>
<td>os</td>
<td>macOS Catalina 10.15.7</td>
</tr>
<tr>
<td>system</td>
<td>x86_64, darwin17.0</td>
</tr>
<tr>
<td>ui</td>
<td>X11</td>
</tr>
<tr>
<td>language</td>
<td>(EN)</td>
</tr>
<tr>
<td>collate</td>
<td>en_AU.UTF-8</td>
</tr>
<tr>
<td>ctype</td>
<td>en_AU.UTF-8</td>
</tr>
<tr>
<td>tz</td>
<td>Australia/Melbourne</td>
</tr>
<tr>
<td>date</td>
<td>2020-12-02</td>
</tr>
</tbody>
</table>

### Packages

<table>
<thead>
<tr>
<th>Package</th>
<th>Version</th>
<th>Date</th>
<th>Lib</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>anicon</td>
<td>0.1.0</td>
<td>2020-06-21</td>
<td>[1]</td>
<td>Github (emitanaka/anicon@0b756df)</td>
</tr>
<tr>
<td>assertthat</td>
<td>0.2.1</td>
<td>2019-03-21</td>
<td>[2]</td>
<td>CRAN (R 4.0.0)</td>
</tr>
</tbody>
</table>

These slides are licensed under

[CC BY-NC-SA](https://creativecommons.org/licenses/by-nc-sa/4.0/)