
Data Wrangling with R: Day 2Data Wrangling with R: Day 2

Dealing with dates with Dealing with dates with lubridatelubridate

Presented by Emi Tanaka
Department of Econometrics and Business Statistics

 emi.tanaka@monash.edu @statsgen2nd December 2020 @ Statistical Society of Australia | Zoom

Date in R Base R Part 1

Dealing with dates alone is relatively straightforward compared to date and time

Dealing with date and time is ... tricky so let's start with dates

Sys.Date() # System Date, gets the date when the command is run

[1] "2020-12-03"

Dates in R have class Date 📅 even though it looks like character 🔢

class(Sys.Date())

[1] "Date"

It's actually a numerical value under the hood, what is this number? 🤔

unclass(Sys.Date())

[1] 18599 2/20

Date in R Base R Part 2

 1st January 1970 is a special reference point

Let's have a look at the numerical value under the hood of Date objects

unclass(as.Date("1970/01/02"))

[1] 1

unclass(as.Date("1969/12/31"))

[1] -1

Yup, the number under the hood is the number of days after (if positive) or before
(if negative) 1st January 1970

And yes, you can use as.Date to convert objects to Date

3/20

Date in R Base R Part 3

Dates do no have to be in the format of "YYYY/MM/DD" (in fact, there are many format in the wild)

If it has a different format, then you can use the conversion specification with a
"%" symbol followed by a single letter note quite regex, but like it

as.Date("Xmas is 25 December 2020", format = "Xmas is %d %B %Y")

[1] "2020-12-25"

You can find some widely used conversion specification in documentation at
?strptime but some depends on your operating system

Below are some common ones:

%b abbreviated
month

%B full month

%e day of the month
(01, 02, ..., 31)

%y year without
century (00-99)

4/20

 System locale
"aralık" is December in Turkey

as.Date("Xmas is 25 aralık 2020", format = "Xmas is %d %B %Y")

[1] NA

Let's temorary set our system locale to Turkey

Sys.setlocale("LC_TIME", "tr_TR.UTF-8") # temporary set to Turkey locale

as.Date("Xmas is 25 aralık 2020", format = "Xmas is %d %B %Y")

[1] "2020-12-25"

(And set it back to English again) "UTF-8" might only for Unix and Linux systems

Sys.setlocale("LC_TIME", "en_AU.UTF-8")

5/20

Date and Time in R Base R Part 1

two main date-time classes in R: POSIXct and POSIXlt avoid using POSIXlt if possible

POSIX stands for Portable Operating System Interface

ct stands for calendar time

as.POSIXct("2020-12-02 13:00", format = "%Y-%m-%e %H:%M")

[1] "2020-12-02 13:00:00 AEDT"

unclass(as.POSIXct("2020-12-02 13:00", format = "%Y-%m-%e %H:%M"))

[1] 1606874400
attr(,"tzone")
[1] ""

 1970/01/01 00:00:00 UTC is a special reference point called Unix epoch and
the above number is the number of seconds after Unix epoch 6/20

Date and Time in R Base R Part 2

POSIXlt seems like it's the same as POSIXct

as.POSIXlt("2020-12-02 13:00", format = "%Y-%m-%e %H:%M")

[1] "2020-12-02 13:00:00 AEDT"

But under the hood, it's a list of time attributes

unclass(as.POSIXlt("2020-12-02 13:00", format = "%Y-%m-%e %H:%M"))

$sec
[1] 0

$min
[1] 0

$hour
[1] 13 7/20

Time zone
melb <- as.POSIXct("2020-12-02 13:00", format = "%Y-%m-%e %H:%M",
 tz = "Australia/Melbourne")

perth <- as.POSIXct("2020-12-02 13:00", format = "%Y-%m-%e %H:%M",
 tz = "Australia/Perth")

melb - perth

Time difference of -3 hours

You can find the names of the time zones using OlsonNames()
If you want to know which time zone your system is using:

Sys.timezone()

[1] "Australia/Melbourne"

8/20

Working with lubridate

Date in R lubridate
Remember, lubridate isn't part of core tidyverse so you have to load it up
explicitly

library(lubridate)

To convert string to a Date, you can use ymd and friends. E.g.

ymd("2012 Dec 30th")

[1] "2012-12-30"

mdy("01/30 99")

[1] "1999-01-30"

dmy("1st January 2015")

[1] "2015-01-01"

You might have guessed it but:
y = year, m = month, and d = day.

The order determines the
expected order of its appearance
in the string

10/20

Date and time in R lubridate
To convert string to POSIXct, you can use ymd_hms and friends

ymd_hms("20140101 201001", tz = "Australia/Melbourne")

[1] "2014-01-01 20:10:01 AEDT"

mdy_h("09/09/2010 4PM")

[1] "2010-09-09 16:00:00 UTC"

ydm_hm("Today is not 2009 9th Sep 4:30PM")

[1] "2009-09-09 16:30:00 UTC"

ydm_hms("19 9 July | 4:30:03.34343")

[1] "2019-07-09 04:30:03 UTC"

h = hour, m = minute, and
s = second.

It's remarkably clever!

The time has to be after date
though.

11/20

Conversion to date and time lubridate
Making Date from individual date components:
make_date(year = 2018,
 month = 8,
 day = 3)

[1] "2018-08-03"

Making POSIXct from individual components:
make_datetime(year = 2018,
 month = 8,
 day = 3,
 hour = 10,
 min = 3,
 sec = 30)

[1] "2018-08-03 10:03:30 UTC" 12/20

Extracting date or time components lubridate
t1 <- ymd_hms("20101010 13:30:30")

month(t1, label = TRUE)

[1] Oct
12 Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < ... < Dec

year(t1)

[1] 2010

month(t1)

[1] 10

day(t1)

[1] 10

hour(t1)

[1] 13

minute(t1)

[1] 30

second(t1)

[1] 30

yday(t1)

[1] 283

mday(t1)

[1] 10

wday(t1)

[1] 1
13/20

Date and time modifiers
month(t1) <- 3
t1

[1] "2010-03-10 13:30:30 UTC"

mday(t1) <- 20
t1

[1] "2010-03-20 13:30:30 UTC"

with_tz(t1, "Australia/Perth")

[1] "2010-03-20 21:30:30 AWST"

14/20

Durations lubridate
Duration is a special class in lubridate

Some convenient constructors for Duration are:

dyears(1)

[1] "31557600s (~1 years)"

dweeks(10)

[1] "6048000s (~10 weeks)"

ddays(4)

[1] "345600s (~4 days)"

dhours(3)

[1] "10800s (~3 hours)" 15/20

Maths with Durations lubridate
ddays(4) + dweeks(1)

[1] "950400s (~1.57 weeks)"

ymd("2013-01-01") + ddays(5)

[1] "2013-01-06"

ymd_hms("2020-10-1 2:00:00", tz = "Australia/Melbourne") + ddays(1)

[1] "2020-10-02 02:00:00 AEST"

What happened below?

ymd_hms("2020-10-4 1:00:00", tz = "Australia/Melbourne") + dhours(1)

[1] "2020-10-04 03:00:00 AEDT"

Day light saving started at Sun 4th Oct 2020 2AM in Melbourne 16/20

Period lubridate
Period is a special class in lubridate

Constructors for Period are like for Duration but without the prefix "d":

years(1)

[1] "1y 0m 0d 0H 0M 0S"

weeks(10)

[1] "70d 0H 0M 0S"

days(4)

[1] "4d 0H 0M 0S"

hours(3)

[1] "3H 0M 0S" 17/20

Maths with Period lubridate
days(4) + weeks(1)

[1] "11d 0H 0M 0S"

ymd("2013-01-01") + days(5)

[1] "2013-01-06"

ymd_hms("2020-10-1 2:00:00", tz = "Australia/Melbourne") + days(1)

[1] "2020-10-02 02:00:00 AEST"

ymd_hms("2020-10-4 1:00:00", tz = "Australia/Melbourne") + hours(1)

[1] NA

ymd_hms("2020-10-4 1:00:00", tz = "Australia/Melbourne") + hours(2)

[1] "2020-10-04 03:00:00 AEDT" 18/20

 If you installed the dwexercise package,
run below in your R console

learnr::run_tutorial("day2-exercise-03", package = "dwexercise")

 If the above doesn't work for you, go here.
 Questions or issues, let us know!

15:00

https://ebsmonash.shinyapps.io/dw-day2-exercise-03

Session Information

These slides are licensed under

devtools::session_info()

─ Session info ───
setting value
version R version 4.0.1 (2020-06-06)
os macOS Catalina 10.15.7
system x86_64, darwin17.0
ui X11
language (EN)
collate en_AU.UTF-8
ctype en_AU.UTF-8
tz Australia/Melbourne
date 2020-12-03

─ Packages ───
package * version date lib source
anicon 0.1.0 2020-06-21 [1] Github (emitanaka/anicon@0b756df)
assertthat 0.2.1 2019-03-21 [2] CRAN (R 4.0.0)

20/20

https://creativecommons.org/licenses/by-sa/3.0/au/

