
Data Wrangling with R: Day 2Data Wrangling with R: Day 2

Formatting factors with Formatting factors with forcatsforcats

Presented by Emi Tanaka
Department of Econometrics and Business Statistics

 emi.tanaka@monash.edu @statsgen2nd December 2020 @ Statistical Society of Australia | Zoom

There are two types of categorical variables

Nominal where there is no intrinsic ordering to the
categories
E.g. blue, grey, black, white.

Ordinal where there is a clear order to the categories
E.g. Strongly disagree, disagree, neutral, agree, strongly agree.

2/22

Categorical variables in R Part 1

In R, categorical variables may be encoded in various ways.

cat_chr <- c("red", "white", "blue")
cat_fct <- factor(c("red", "white", "blue"))

class(cat_chr)

[1] "character"

class(cat_fct)

[1] "factor"

Then you have categorical variables that look like a numerical variable
(e.g. coded variables like say 1=male, 2=female)
And also those that have fixed levels of numerical values
(e.g. ToothGrowth$dose: 0.5, 1.0 and 2.0) 3/22

So why encode as factor instead of character?

In some cases, characters are converted to factors (or
vice-versa) in functions so they can be similar.

The main idea of a factor is that the variable has a
fixed number of levels

4/22

Categorical variables in R Part 2

When a variable is encoded as a factor then there is an attribute with the levels

data <- c(2, 2, 1, 1, 3, 3, 3, 1)
factor(data)

[1] 2 2 1 1 3 3 3 1
Levels: 1 2 3

You can easily change the labels of the variables:

factor(data,
 labels = c("I", "II", "III"))

[1] II II I I III III III I
Levels: I II III

5/22

Categorical variables in R Part 3

Order of the factors are determined by the input:

numerical input are ordered in increasing order
factor(c(1, 3, 10))

[1] 1 3 10
Levels: 1 3 10

character input are ordered alphabetically
factor(c("1", "3", "10"))

[1] 1 3 10
Levels: 1 10 3

you can specify order of levels explicitly
factor(c("1", "3", "10"), levels = c("1", "3", "10"))

[1] 1 3 10 6/22

Why would the order of the levels matter?
Some downstream analysis may use it

data("population", package = "tidyr")
population %>%
 filter(year == 2013) %>%
 # just choose 5 countries
 slice(c(1, 11, 21, 31, 41)) %>%
 ggplot(aes(population, country)) +
 geom_col()

population %>%
 filter(year == 2013) %>%
 slice(c(1, 11, 21, 31, 41)) %>%
 mutate(country =
 reorder(country, population)) %>%
 ggplot(aes(population, country)) +
 geom_col()

7/22

Cautionary tales of working
with factors

Numerical factors in R
x <- factor(c(10, 20, 30, 10, 20))
mean(x)

Warning in mean.default(x): argument is not numeric
or logical: returning NA

[1] NA

 as.numeric function returns the internal integer values of the factor
mean(as.numeric(x))

[1] 1.8

You probably want to use:
mean(as.numeric(levels(x)[x]))

[1] 18

mean(as.numeric(as.character(x)))

[1] 18

.

9/22

Defining levels explicitly Part 1

If the variable contain values that are not in the levels of the factors, then those
values will become a missing value

factor(c("Yes", "No", "Maybe"), levels = c("Yes", "No"))

[1] Yes No <NA>
Levels: Yes No

This can be useful at times, but it's a good idea to check the values before it is
transformed as NA

factor(c("Yes", "No", "No", "Yess"), levels = c("Yes", "No"))

[1] Yes No No <NA>
Levels: Yes No

10/22

Defining levels explicitly Part 2

You can have levels that are not observed

f <- factor(c("Yes", "Yes", "Yes", "No"), levels = c("Yes", "Maybe", "No"))
f

[1] Yes Yes Yes No
Levels: Yes Maybe No

This can be useful at times downstream, e.g.

table(f)

f
Yes Maybe No
3 0 1

11/22

Combining factors as vectors

f1 <- factor(c("F", "M", "F"))
f2 <- factor(c("F", "F"))

What do you think the output will be for below?

c(f1, f2)

[1] 1 2 1 1 1

Was that expected?

The c function strips the class when you combine factors

unclass(f1)

[1] 1 2 1
attr(,"levels")
[1] "F" "M"

12/22

Combining factors in a data frame

df1 <- data.frame(f = factor(c("a", "b")))
df2 <- data.frame(f = factor(c("c", "b")))

What do you think the output below will be?

rbind(df1, df2)

f
1 a
2 b
3 c
4 b

rbind(df1, df2)$f

[1] a b c b
Levels: a b c

13/22

Working with factors with
forcats

Formatting factors
The forcats package is part of tidyverse

Like the stringr package the main functions in forcats prefix with fct_ or
lvls_ and the first argument is a factor (or a character) vector
some functions do not allow character as input, e.g. fct_c

The list of available commands are:
fct_anon

fct_c

fct_collapse

fct_count

fct_cross

fct_drop

fct_expand

fct_explicit_na

fct_infreq

fct_inorder

fct_inseq

fct_lump

fct_lump_lowfreq

fct_lump_min

fct_lump_n

fct_lump_prop

fct_match

fct_other

fct_recode

fct_relabel

fct_relevel

fct_reorder

fct_reorder2

fct_rev

fct_shift

fct_shuffle

fct_unify

fct_unique

lvls_expand

lvls_reorder

lvls_revalue

lvls_union

Hadley Wickham (2020). forcats: Tools for Working with Categorical Variables (Factors). R package version 0.5.0. 15/22

Combining factors as vectors with forcats

f1 <- factor(c("F", "M", "F"))
f2 <- factor(c("F", "F"))

c(f1, f2)

[1] 1 2 1 1 1

fct_c(f1, f2)

[1] F M F F F
Levels: F M

c1 <- c("F", "M", "F")

fct_c(c1, f2)

Error: All elements of `...` must be factors

16/22

Count levels in a factor
data("gss_cat", package = "forcats")
table(gss_cat$race)

Other Black White
1959 3129 16395
Not applicable
0

table in Base R is useful but you may want the output as a data frame

fct_count(gss_cat$race, sort = TRUE, prop = TRUE)

A tibble: 4 x 3
f n p
<fct> <int> <dbl>
1 White 16395 0.763

17/22

Collapse levels in a factor
levels(gss_cat$marital)

[1] "No answer" "Never married" "Separated"
[4] "Divorced" "Widowed" "Married"

gss_cat$marital %>%
 fct_collapse(Single = c("Never married", "Separated", "Divorced")) %>%
 fct_relevel("No answer", after = Inf) %>% # move to last place
 fct_count()

A tibble: 4 x 2
f n
<fct> <int>
1 Single 9542
2 Widowed 1807
3 Married 10117
4 No answer 17 18/22

Lumping factor levels Part 1

Sometimes you have a lot of levels and you'd prefer to lump some of them
together to the "Other" category
What criterion do you use to lump levels together?

There are four main criterion to lump levels using fct_lump* functions:

fct_lump_n: lump all levels except the n most frequent

fct_lump_min: lump together those less than min counts

fct_lump_prop: lump together those less than proportion of prop

fct_lump_lowfreq: lump up least frequent levels such that the Other
level is still the smallest level

fct_lump lifecyclelifecycle supersededsuperseded , it is better to use one of the above functions instead

19/22

Lumping factor levels Part 2

levels(gss_cat$relig)

[1] "No answer"
[2] "Don't know"
[3] "Inter-nondenominational"
[4] "Native american"
[5] "Christian"
[6] "Orthodox-christian"
[7] "Moslem/islam"
[8] "Other eastern"
[9] "Hinduism"
[10] "Buddhism"
[11] "Other"
[12] "None"
[13] "Jewish"
[14] "Catholic"

fct_lump_n(gss_cat$relig, n = 2) %>%
 fct_count(sort = TRUE, prop = TRUE)

A tibble: 3 x 3
f n p
<fct> <int> <dbl>
1 Protestant 10846 0.505
2 Other 5513 0.257
3 Catholic 5124 0.239

fct_lump_lowfreq(gss_cat$relig) %>%
 fct_count(sort = TRUE, prop = TRUE)

A tibble: 2 x 3
f n p
<fct> <int> <dbl>
1 Protestant 10846 0.505 20/22

 If you installed the dwexercise package,
run below in your R console

learnr::run_tutorial("day2-exercise-02", package = "dwexercise")

 If the above doesn't work for you, go here.
 Questions or issues, let us know!

15:00

https://ebsmonash.shinyapps.io/dw-day2-exercise-02

Session Information

These slides are licensed under

devtools::session_info()

─ Session info ──────────────────────────────────
setting value
version R version 4.0.1 (2020-06-06)
os macOS Catalina 10.15.7
system x86_64, darwin17.0
ui RStudio
language (EN)
collate en_AU.UTF-8
ctype en_AU.UTF-8
tz Australia/Melbourne
date 2020-12-01

─ Packages ──────────────────────────────────────
package * version date lib
anicon 0.1.0 2020-06-21 [1]
assertthat 0.2.1 2019-03-21 [2]

22/22

https://creativecommons.org/licenses/by-sa/3.0/au/

