
Data Wrangling with R: Day 1Data Wrangling with R: Day 1

Manipulating strings with Manipulating strings with stringrstringr

Presented by Emi Tanaka
Department of Econometrics and Business Statistics

 emi.tanaka@monash.edu @statsgen1st December 2020 @ Statistical Society of Australia | Zoom

Manipulating strings
The stringr package is powered by the stringi package which in turn uses
the ICU C library to provide fast peformance for string manipulation

Main functions in stringr prefix with str_ (stringi prefix with stri_) and
the first argument is string (or a vector of strings)

What do you think str_trim and str_squish do?

str_trim(c(" Apple ", " Goji Berry "))

[1] "Apple" "Goji Berry"

str_squish(c(" Apple ", " Goji Berry "))

[1] "Apple" "Goji Berry"

Hadley Wickham (2019). stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.4.0.

Gagolewski M. and others (2020). R package stringi: Character string processing facilities. 2/20

http://site.icu-project.org/

Base R and stringr

Previous 1 2 Next

Base R stringr

gregexpr(pattern, x) str_locate_all(x, pattern)

grep(pattern, x, value = TRUE) str_subset(x, pattern)

grep(pattern, x) str_which(x, pattern)

grepl(pattern, x) str_detect(x, pattern)

gsub(pattern, replacement, x) str_replace_all(x, pattern, replacement)

nchar(x) str_length(x)

order(x) str_order(x)

regexec(pattern, x) + regmatches() str_match(x, pattern)

regexpr(pattern, x) + regmatches() str_extract(x, pattern)

regexpr(pattern, x) str_locate(x, pattern)

See more at https://stringr.tidyverse.org/articles/from-base.html 3/20

https://stringr.tidyverse.org/articles/from-base.html

Why use stringr?
There are a number of considerations to ensure there is consistency in syntax
and user expectation (both for input and output)
For example, let's consider combining multiple strings into one.
Base R
paste0("Area", "1", c("A", "B"))

[1] "Area1A" "Area1B"

paste0("Area", "1", c("A", NA, "C"))

[1] "Area1A" "Area1NA" "Area1C"

stringr
str_c("Area", "1", c("A", "B"))

[1] "Area1A" "Area1B"

str_c("Area", "1", c("A", NA, "C"))

[1] "Area1A" NA "Area1C"

If the Base R result is preferable then NA can be replaced with character with
str_replace_na("A", NA, "C") first

4/20

Case study Aussie Local Government Area
LGA <- ozmaps::abs_lga %>% pull(NAME)
LGA[1:7]

[1] "Broken Hill (C)" "Waroona (S)" "Toowoomba (R)" "West Arthur (S)"
[5] "Moreton Bay (R)" "Etheridge (S)" "Cleve (DC)"

C = Cities A = Areas RC = Rural Cities
B = Boroughs S = Shires DC = District Councils
M = Municipalities T = Towns AC = Aboriginal Councils
RegC = Regional Councils

🎯 Extract the LGA status from the LGA names
How?

Michael Sumner (2020). ozmaps: Australia Maps. R package version 0.3.6. 5/20

Extracting the string
str_extract(LGA, "\\(.+\\)")

[1] "(C)" "(S)" "(R)" "(S)" "(R)"
[6] "(S)" "(DC)" "(R)" "(DC)" "(C)"
[11] "(DC)" "(S)" "(S)" "(S)" "(DC)"
[16] "(A)" "(C)" "(A)" "(T)" "(RC)"
[21] "(A)" "(S)" "(S)" "(S)" "(C)"
[26] "(DC)" "(R)" "(A)" "(C)" "(DC)"
[31] "(S)" "(S)" "(A)" "(S)" "(S)"
[36] "(R)" "(M)" "(A)" "(C)" "(S)"
[41] "(S)" "(C)" "(A)" "(S)" "(C)"
[46] "(AC)" "(A)" "(S)" "(A)" "(C)"
[51] "(A)" "(R)" "(S)" "(T)" "(C)"
[56] "(S)" "(S)" "(R)" "(C)" "(T)"
[61] "(C)" "(S)" "(C)" "(C)" "(C)"
[66] "(C)" "(S)" "(DC)" "(DC)" "(S)"

What is "\\(.+\\)"???

This is a pattern expressed as regular expression or regex for short

Note in R, you have to add an extra \ when \ is included in the
pattern (yes this means that you can have a lot of backslashes... just keep adding \ until it works! Enjoy this xkcd comic.)

From R v4.0.0 onwards, you can use raw string to elimiate all the
extra \, e.g. r"(\(.+\))" is the same as "\\(.+\\)"

6/20

https://xkcd.com/1638/

Regular expressions Part 1

Regular expression, or regex, is a string of characters that define a search
pattern for text
Regular expression is... hard, but comes up often enough that it's worth learning

ozanimals <- c("koala", "kangaroo", "kookaburra", "numbat")

= Basic match

str_detect(ozanimals, "oo")

[1] FALSE TRUE TRUE FALSE

str_extract(ozanimals, "oo")

[1] NA "oo" "oo" NA

str_match(ozanimals, "oo")

[,1]
[1,] NA
[2,] "oo"
[3,] "oo"
[4,] NA

7/20

Regular expressions Part 2

= Meta-characters

"." a wildcard to match any character except a new line

str_starts(c("color", "colouur", "colour", "red-column"), "col...")

[1] FALSE TRUE TRUE FALSE

"(.|.)" a marked subexpression with alternate possibilites marked with |

str_replace(c("lovelove", "move", "stove", "drove"), "(l|dr|st)o", "ha")

[1] "havelove" "move" "have" "have"

"[...]" matches a single character contained in the bracket

str_replace_all(c("cake", "cookie", "lamington"), "[aeiou]", "_")

8/20

Regular expressions Part 3

= Meta-character quantifiers

"?" zero or one occurence of preceding element

str_extract(c("color", "colouur", "colour", "red"), "colou?r")

[1] "color" NA "colour" NA

"*" zero or more occurence of preceding element

str_extract(c("color", "colouur", "colour", "red"), "colou*r")

[1] "color" "colouur" "colour" NA

"+" one or more occurence of preceding element

str_extract(c("color", "colouur", "colour", "red"), "colou+r")

9/20

Regular expressions Part 4

"{n}" preceding element is matched exactly n times

str_replace(c("banana", "bananana", "bana", "banananana"), "ba(na){2}", "-")

[1] "-" "-na" "bana" "-nana"

"{min,}" preceding element is matched min times or more

str_replace(c("banana", "bananana", "bana", "banananana"), "ba(na){2,}", "-")

[1] "-" "-" "bana" "-"

"{min,max}" preceding element is matched at least min times but no more
than max times

str_replace(c("banana", "bananana", "bana", "banananana"), "ba(na){1,2}", "-")

[1] "-" "-na" "-" "-nana" 10/20

Regular expressions Part 5

= Character classes

[:alpha:] or [A-Za-z] to match alphabetic characters

[:alnum:] or [A-Za-z0-9] to match alphanumeric characters

[:digit:] or [0-9] or \\d to match a digit

[^0-9] to match non-digits

[a-c] to match a, b or c

[A-Z] to match uppercase letters

[a-z] to match lowercase letters

[:space:] or [\t\r\n\v\f] to match whitespace characters

and more...
11/20

View matches with regular expressions
str_view(c("banana", "bananana", "bana", "banabanana"), "ba(na){1,2}")

banana

bananana

bana

banabanana

str_view_all(c("banana", "bananana", "bana", "banabanana"), "ba(na){1,2}")

banana

bananana

bana

When a function in stringr ends with _all, all matches of the
pattern are considered

The one without _all only considers the first match

12/20

-Australian Bureau of Statistics

Back to Extracting the string
str_extract(LGA, "\\(.+\\)") %>%
 table()

“ Where the same Local Government Area name appears in different States or Territories, the State or
Territory abbreviation appears in parenthesis after the name. Local Government Area names are therefore
unique.

.
(A) (AC) (B) (C) (C) (NSW) (C) (SA) (C) (Vic.)
100 2 1 120 2 1 2
(DC) (DC) (SA) (M) (M) (Tas.) (R) (R) (Qld) (RC)
40 1 23 4 38 1 7
(RegC) (S) (S) (Qld) (T)
1 182 1 12

13/20

https://www.abs.gov.au/ausstats/abs@.nsf/Lookup/by%20Subject/1270.0.55.003~June%202020~Main%20Features~Local%20Government%20Areas%20(LGAs)~3

Retry Extracting the string
str_extract(LGA, "\\([^)]+\\)") %>%
 # remove the brackets
 str_replace_all("[\\(\\)]", "") %>%
 table()

.
A AC B C DC M R RC RegC S T
100 2 1 125 41 27 39 7 1 183 12

"[]" for single character match

We want to match (and) but these are meta-characters

So we need to escape it to have it as a literal: \(and \)

But we must escape the escape character... so it's actually \\(\\)

14/20

R v4.0.0 Extracting the string
str_extract(LGA, r"(\([^)]+\))") %>%
 # remove the brackets
 str_replace_all(r"([\(\)])", "") %>%
 table()

.
A AC B C DC M R RC RegC S T
100 2 1 125 41 27 39 7 1 183 12

If using R v4.0.0 onwards, you can use the raw string version instead

15/20

Regex still difficult? Try RStudio addin regexplain

RVerbalExpressions
If you still find it difficult, you may find an expressive piping approach to be easier
for you:

library(RVerbalExpressions)

Warning: package 'RVerbalExpressions' was built under R version 4.0.2

rx_start_of_line() %>%
 rx_find('http') %>%
 rx_maybe('s') %>%
 rx_find('://') %>%
 rx_maybe('www.') %>%
 rx_anything_but(' ') %>%
 rx_end_of_line()

[1] "^(http)(s)?(\\://)(www\\.)?([^]*)$"

Tyler Littlefield (2019). RVerbalExpressions: Create Regular Expressions Easily. R package version 0.1.0 17/20

stringr::str_glue or glue::glue
animal <- c("koala", "kangaroo", "numbat")
quality <- c("cuddly", "cool", "cute")
paste0("I love ", animal, ", it's so ", quality, "!")

[1] "I love koala, it's so cuddly!" "I love kangaroo, it's so cool!"
[3] "I love numbat, it's so cute!"

It works, but we have to break out of the string constantly to refer to variables in
the environment, but str_glue saves you the trouble!

str_glue("I love {animal}, it's so {quality}!")

I love koala, it's so cuddly!
I love kangaroo, it's so cool!
I love numbat, it's so cute!

Jim Hester (2020). glue: Interpreted String Literals. R package version 1.4.2.

str_glue is just a
wrapper for glue
from the glue
package

18/20

stringr::str_glue_data or
glue::glue_data

df <- data.frame(animal = animal,
 quality = quality)

glue::glue_data(df, "I love {animal}, it's so {quality}!")

I love koala, it's so cuddly!
I love kangaroo, it's so cool!
I love numbat, it's so cute!

stringr::str_glue_data(df, "I love {animal}, it's so {quality}!")

I love koala, it's so cuddly!
I love kangaroo, it's so cool!
I love numbat, it's so cute!

19/20

Session Information

These slides are licensed under

devtools::session_info()

─ Session info ───
setting value
version R version 4.0.1 (2020-06-06)
os macOS Catalina 10.15.7
system x86_64, darwin17.0
ui X11
language (EN)
collate en_AU.UTF-8
ctype en_AU.UTF-8
tz Australia/Melbourne
date 2020-11-26

─ Packages ───
package * version date lib
anicon 0.1.0 2020-06-21 [1]
assertthat 0.2.1 2019-03-21 [2]

20/20

https://creativecommons.org/licenses/by-sa/3.0/au/

