Push the knit
button!
library(tidyverse) # contains ggplot2, dplyr, tidyr, etc
library(leaflet)
library(lubridate)
library(plotly)
library(gganimate)
library(ggthemes)
tuberculosis
datasettb <- read_csv(here::here("data/TB_notifications_2020-07-01.csv")) %>%
dplyr::select(country, iso3, year, new_sp_m04:new_sp_fu) %>%
pivot_longer(cols=new_sp_m04:new_sp_fu, names_to="sexage", values_to="count") %>%
mutate(sexage = str_replace(sexage, "new_sp_", "")) %>%
mutate(sex=substr(sexage, 1, 1),
age=substr(sexage, 2, length(sexage))) %>%
dplyr::select(-sexage) %>%
filter(!(age %in% c("04", "014", "514", "u"))) %>%
filter(year > 1996, year < 2013) %>%
mutate(age_group = factor(age,
labels = c("15-24", "25-34", "35-44",
"45-54", "55-64", "65-"))) %>%
dplyr::select(country, year, age_group, sex, count)
# Filter Australia
tb_oz <- tb %>%
filter(country == "Australia")
# Aggregate Australian counts by year
tb_oz_yearly <- tb_oz %>%
group_by(country, year) %>%
summarise(count = sum(count))
platypus
datasetload(here::here("data/platypus.rda"))
platypus <- platypus %>%
mutate(year = year(eventDate)) %>%
filter(year > 2018)
# add your code here!
Add colour to plotly highlighting
Remember this code:
tb_action <- highlight_key(tb_oz, ~age_group)
p2 <- ggplot(tb_action, aes(x=year, y=count)) +
geom_line(aes(group=age_group)) +
geom_smooth() +
facet_wrap(~sex)
gg <- ggplotly(p2, height = 300, width = 600) %>%
layout(title = "Click on a line to highlight an age group")
highlight(gg)
Use this plot as the base, and check highlighting still works
# add your code here!
# add your code here!