Skip to contents

The EXAMINE project collected data from 50 suction trap locations across Europe to explore environmental and landscape factors affecting aphid flight timing and abundance. This dataset specifically focuses on the Julian day of the first capture of the aphid species Myzus persicae at each site in 1995. Explanatory variables include geographical information (latitude, longitude, altitude), ten meteorologicalvariables (monthly rainfall from October 1994 to May 1995, mean temperature for the coldest 30-day period, and mean temperature for the subsequent 60-day period), and eight land-use variables representing the proportion of land within a 75 km radius used for different purposes (such as forest types, agricultural land, urban areas, and water bodies). These factors were selected for their potential influence on aphid migration patterns, with earlier flight dates expected in warmer and drier regions. The dataset enables analysis of how geography, climate, and landscape usage affect the seasonal timing of aphid arrival across Europe.

Usage

examine

Format

A data frame with 23 variables: Trap, JDay, Latitude, Longitude, Altitude, OctRain, NovRain, DecRain, JanRain, FebRain, MarRain, AprRain, MayRain, C30Day, F60Day, ConForest, DecForest, MixForest, Grassland, Arable, InlandWater, Sea, Urban.

Trap

Factor. Unique identifier for each suction trap location.

JDay

Integer. Julian day of first catch of Myzus persicae at the site in 1995.

Latitude

Numeric. Latitude (in decimal degrees) of the trap site.

Longitude

Numeric. Longitude (in decimal degrees) of the trap site.

Altitude

Integer. Altitude (in meters above sea level) of the trap site.

OctRain

Numeric. Rainfall (mm) at the trap site in October 1994.

NovRain

Numeric. Rainfall (mm) at the trap site in November 1994.

DecRain

Numeric. Rainfall (mm) at the trap site in December 1994.

JanRain

Numeric. Rainfall (mm) at the trap site in January 1995.

FebRain

Numeric. Rainfall (mm) at the trap site in February 1995.

MarRain

Numeric. Rainfall (mm) at the trap site in March 1995.

AprRain

Numeric. Rainfall (mm) at the trap site in April 1995.

MayRain

Numeric. Rainfall (mm) at the trap site in May 1995.

C30Day

Numeric. Mean temperature (°C) for the coldest consecutive 30-day period at the site.

F60Day

Numeric. Mean temperature (°C) for the following 60-day period after the coldest period at the site.

ConForest

Numeric. Proportion of land (within 75 km radius) under coniferous forest.

DecForest

Numeric. Proportion of land (within 75 km radius) under deciduous forest.

MixForest

Numeric. Proportion of land (within 75 km radius) under mixed forest.

Grassland

Numeric. Proportion of land (within 75 km radius) as grassland.

Arable

Numeric. Proportion of land (within 75 km radius) as arable land.

InlandWater

Numeric. Proportion of land (within 75 km radius) as inland water.

Sea

Numeric. Proportion of area (within 75 km radius) that is sea.

Urban

Numeric. Proportion of land (within 75 km radius) classified as urban area.

Source

Welham, S. J., Gezan, S. A., Clark, S. J., and Mead, A. (2015) Statistical Methods in Biology: Design and analysis of experiments and regression

Examples

step(lm(JDay ~ . - Trap, data = examine), direction = "backward")
#> Start:  AIC=284.22
#> JDay ~ (Trap + Latitude + Longitude + Altitude + OctRain + NovRain + 
#>     DecRain + JanRain + FebRain + MarRain + AprRain + MayRain + 
#>     C30Day + F60Day + ConForest + DecForest + MixForest + Grassland + 
#>     Arable + InlandWater + Sea + Urban) - Trap
#> 
#>               Df Sum of Sq     RSS    AIC
#> - JanRain      1       0.2  6102.8 282.22
#> - AprRain      1       7.1  6109.7 282.28
#> - F60Day       1      54.3  6156.9 282.67
#> - DecRain      1      95.3  6197.9 283.00
#> - C30Day       1     133.5  6236.1 283.30
#> - InlandWater  1     142.6  6245.2 283.38
#> - Altitude     1     210.0  6312.6 283.91
#> <none>                      6102.6 284.22
#> - Latitude     1     287.1  6389.7 284.52
#> - Grassland    1     294.2  6396.8 284.58
#> - MarRain      1     339.1  6441.7 284.93
#> - FebRain      1     350.9  6453.5 285.02
#> - Longitude    1     365.7  6468.3 285.13
#> - Urban        1     439.7  6542.3 285.70
#> - MixForest    1     443.1  6545.7 285.73
#> - ConForest    1     464.3  6566.9 285.89
#> - NovRain      1     744.3  6846.9 287.98
#> - Sea          1     825.9  6928.5 288.57
#> - Arable       1     874.1  6976.7 288.92
#> - OctRain      1    1631.7  7734.3 294.07
#> - DecForest    1    2353.1  8455.7 298.53
#> - MayRain      1    4501.5 10604.1 309.85
#> 
#> Step:  AIC=282.22
#> JDay ~ Latitude + Longitude + Altitude + OctRain + NovRain + 
#>     DecRain + FebRain + MarRain + AprRain + MayRain + C30Day + 
#>     F60Day + ConForest + DecForest + MixForest + Grassland + 
#>     Arable + InlandWater + Sea + Urban
#> 
#>               Df Sum of Sq     RSS    AIC
#> - AprRain      1       7.9  6110.7 280.29
#> - F60Day       1      66.0  6168.7 280.76
#> - InlandWater  1     144.3  6247.0 281.39
#> - C30Day       1     198.3  6301.1 281.82
#> - Altitude     1     226.7  6329.5 282.05
#> - DecRain      1     227.5  6330.3 282.05
#> <none>                      6102.8 282.22
#> - Latitude     1     310.5  6413.3 282.70
#> - Grassland    1     326.4  6429.2 282.83
#> - Longitude    1     382.7  6485.5 283.26
#> - MarRain      1     416.8  6519.6 283.53
#> - FebRain      1     427.3  6530.1 283.61
#> - Urban        1     441.2  6543.9 283.71
#> - MixForest    1     481.6  6584.4 284.02
#> - ConForest    1     523.1  6625.9 284.34
#> - Sea          1     857.8  6960.6 286.80
#> - Arable       1     937.9  7040.7 287.37
#> - NovRain      1    1067.8  7170.6 288.29
#> - OctRain      1    1636.1  7738.9 292.10
#> - DecForest    1    2355.8  8458.6 296.55
#> - MayRain      1    4505.3 10608.1 307.87
#> 
#> Step:  AIC=280.29
#> JDay ~ Latitude + Longitude + Altitude + OctRain + NovRain + 
#>     DecRain + FebRain + MarRain + MayRain + C30Day + F60Day + 
#>     ConForest + DecForest + MixForest + Grassland + Arable + 
#>     InlandWater + Sea + Urban
#> 
#>               Df Sum of Sq     RSS    AIC
#> - F60Day       1      58.1  6168.8 278.76
#> - InlandWater  1     137.2  6247.9 279.40
#> - C30Day       1     204.8  6315.5 279.94
#> - DecRain      1     227.8  6338.5 280.12
#> <none>                      6110.7 280.29
#> - Altitude     1     257.9  6368.6 280.36
#> - Grassland    1     320.2  6430.9 280.84
#> - Latitude     1     437.0  6547.7 281.74
#> - Urban        1     440.4  6551.1 281.77
#> - MarRain      1     477.0  6587.7 282.05
#> - MixForest    1     527.6  6638.3 282.43
#> - ConForest    1     534.8  6645.5 282.48
#> - FebRain      1     570.1  6680.8 282.75
#> - Longitude    1     622.5  6733.2 283.14
#> - Sea          1     853.1  6963.8 284.82
#> - Arable       1     931.2  7041.9 285.38
#> - NovRain      1    1373.1  7483.8 288.42
#> - OctRain      1    1746.7  7857.4 290.86
#> - DecForest    1    2533.2  8643.9 295.63
#> - MayRain      1    4562.5 10673.2 306.17
#> 
#> Step:  AIC=278.76
#> JDay ~ Latitude + Longitude + Altitude + OctRain + NovRain + 
#>     DecRain + FebRain + MarRain + MayRain + C30Day + ConForest + 
#>     DecForest + MixForest + Grassland + Arable + InlandWater + 
#>     Sea + Urban
#> 
#>               Df Sum of Sq     RSS    AIC
#> - InlandWater  1     102.9  6271.7 277.59
#> - DecRain      1     217.6  6386.4 278.50
#> <none>                      6168.8 278.76
#> - Grassland    1     310.6  6479.3 279.22
#> - Urban        1     434.7  6603.5 280.17
#> - MarRain      1     463.0  6631.8 280.38
#> - FebRain      1     586.9  6755.7 281.31
#> - ConForest    1     590.2  6759.0 281.33
#> - MixForest    1     601.8  6770.6 281.42
#> - Altitude     1     802.6  6971.4 282.88
#> - Longitude    1     832.8  7001.6 283.09
#> - Sea          1     861.0  7029.8 283.29
#> - Arable       1     915.3  7084.1 283.68
#> - NovRain      1    1508.4  7677.2 287.70
#> - OctRain      1    1688.7  7857.4 288.86
#> - C30Day       1    1735.9  7904.7 289.16
#> - DecForest    1    3116.7  9285.5 297.21
#> - Latitude     1    4021.3 10190.1 301.86
#> - MayRain      1    4509.2 10678.0 304.20
#> 
#> Step:  AIC=277.59
#> JDay ~ Latitude + Longitude + Altitude + OctRain + NovRain + 
#>     DecRain + FebRain + MarRain + MayRain + C30Day + ConForest + 
#>     DecForest + MixForest + Grassland + Arable + Sea + Urban
#> 
#>             Df Sum of Sq     RSS    AIC
#> - Grassland  1     209.5  6481.2 277.23
#> - DecRain    1     217.4  6489.0 277.29
#> <none>                    6271.7 277.59
#> - ConForest  1     488.0  6759.6 279.33
#> - MixForest  1     501.5  6773.2 279.44
#> - MarRain    1     546.2  6817.8 279.76
#> - Urban      1     667.3  6939.0 280.64
#> - FebRain    1     745.6  7017.3 281.20
#> - Altitude   1     781.1  7052.7 281.46
#> - Sea        1     839.7  7111.4 281.87
#> - Arable     1     861.2  7132.8 282.02
#> - Longitude  1    1061.7  7333.3 283.41
#> - NovRain    1    1413.9  7685.6 285.75
#> - OctRain    1    1627.6  7899.3 287.12
#> - C30Day     1    1683.1  7954.8 287.48
#> - DecForest  1    3048.3  9320.0 295.39
#> - MayRain    1    4454.9 10726.6 302.42
#> - Latitude   1    4554.4 10826.1 302.88
#> 
#> Step:  AIC=277.23
#> JDay ~ Latitude + Longitude + Altitude + OctRain + NovRain + 
#>     DecRain + FebRain + MarRain + MayRain + C30Day + ConForest + 
#>     DecForest + MixForest + Arable + Sea + Urban
#> 
#>             Df Sum of Sq     RSS    AIC
#> - DecRain    1     230.9  6712.0 276.98
#> <none>                    6481.2 277.23
#> - ConForest  1     287.8  6769.0 277.40
#> - MixForest  1     388.2  6869.4 278.14
#> - MarRain    1     649.7  7130.8 280.01
#> - Sea        1     712.8  7193.9 280.45
#> - Arable     1     795.7  7276.9 281.02
#> - Urban      1     831.8  7313.0 281.27
#> - Altitude   1     874.1  7355.2 281.56
#> - FebRain    1    1112.2  7593.3 283.15
#> - Longitude  1    1155.5  7636.6 283.44
#> - NovRain    1    1432.3  7913.5 285.21
#> - C30Day     1    1581.2  8062.3 286.15
#> - OctRain    1    2165.2  8646.3 289.64
#> - DecForest  1    3110.6  9591.8 294.83
#> - MayRain    1    4427.8 10909.0 301.27
#> - Latitude   1    4519.5 11000.6 301.68
#> 
#> Step:  AIC=276.98
#> JDay ~ Latitude + Longitude + Altitude + OctRain + NovRain + 
#>     FebRain + MarRain + MayRain + C30Day + ConForest + DecForest + 
#>     MixForest + Arable + Sea + Urban
#> 
#>             Df Sum of Sq     RSS    AIC
#> - ConForest  1     134.0  6846.1 275.97
#> <none>                    6712.0 276.98
#> - MixForest  1     288.4  7000.4 277.08
#> - MarRain    1     446.2  7158.2 278.20
#> - Sea        1     522.2  7234.3 278.73
#> - Arable     1     564.8  7276.9 279.02
#> - Altitude   1     808.8  7520.8 280.67
#> - Urban      1     809.9  7522.0 280.68
#> - Longitude  1    1609.4  8321.4 285.73
#> - C30Day     1    1637.1  8349.2 285.89
#> - NovRain    1    1886.8  8598.8 287.37
#> - FebRain    1    2590.9  9302.9 291.30
#> - DecForest  1    2881.5  9593.5 292.84
#> - OctRain    1    3067.2  9779.2 293.80
#> - Latitude   1    4337.5 11049.5 299.91
#> - MayRain    1    6597.5 13309.6 309.21
#> 
#> Step:  AIC=275.97
#> JDay ~ Latitude + Longitude + Altitude + OctRain + NovRain + 
#>     FebRain + MarRain + MayRain + C30Day + DecForest + MixForest + 
#>     Arable + Sea + Urban
#> 
#>             Df Sum of Sq     RSS    AIC
#> - MixForest  1     244.4  7090.4 275.72
#> <none>                    6846.1 275.97
#> - Sea        1     415.1  7261.2 276.91
#> - Arable     1     437.3  7283.4 277.07
#> - MarRain    1     535.5  7381.6 277.74
#> - Altitude   1     738.0  7584.0 279.09
#> - Urban      1    1095.7  7941.8 281.39
#> - C30Day     1    1631.6  8477.7 284.66
#> - NovRain    1    1753.3  8599.3 285.37
#> - Longitude  1    2299.8  9145.9 288.45
#> - DecForest  1    2764.4  9610.4 290.93
#> - OctRain    1    2943.5  9789.5 291.85
#> - FebRain    1    2979.5  9825.6 292.04
#> - Latitude   1    4732.0 11578.0 300.24
#> - MayRain    1    6465.3 13311.3 307.22
#> 
#> Step:  AIC=275.72
#> JDay ~ Latitude + Longitude + Altitude + OctRain + NovRain + 
#>     FebRain + MarRain + MayRain + C30Day + DecForest + Arable + 
#>     Sea + Urban
#> 
#>             Df Sum of Sq     RSS    AIC
#> <none>                    7090.4 275.72
#> - Arable     1     369.0  7459.5 276.26
#> - MarRain    1     372.6  7463.0 276.28
#> - Sea        1     456.8  7547.2 276.85
#> - Urban      1    1057.1  8147.5 280.67
#> - Altitude   1    1160.7  8251.1 281.30
#> - NovRain    1    1754.4  8844.8 284.78
#> - Longitude  1    2056.8  9147.3 286.46
#> - C30Day     1    2095.1  9185.5 286.67
#> - OctRain    1    2701.5  9792.0 289.87
#> - FebRain    1    2740.7  9831.1 290.06
#> - DecForest  1    3595.9 10686.3 294.24
#> - Latitude   1    4488.6 11579.0 298.25
#> - MayRain    1    7027.5 14117.9 308.16
#> 
#> Call:
#> lm(formula = JDay ~ Latitude + Longitude + Altitude + OctRain + 
#>     NovRain + FebRain + MarRain + MayRain + C30Day + DecForest + 
#>     Arable + Sea + Urban, data = examine)
#> 
#> Coefficients:
#> (Intercept)     Latitude    Longitude     Altitude      OctRain      NovRain  
#>  -127.04850      5.04506      1.81366      0.05987     -0.33638      0.36199  
#>     FebRain      MarRain      MayRain       C30Day    DecForest       Arable  
#>     0.40695     -0.16988     -0.59253     -5.86472    164.39112     18.81644  
#>         Sea        Urban  
#>    24.80381   -162.52820  
#>